и Техн №2 (94) 2023 В Газовой промышленности **Ф**газпром 30 Gas **ТЕМА НОМЕРА TPAHCHOPTMPOBKA** Освоение газовых месторождений

3HEPLETNKA

ЗАЩИТА ОТ КОРРОЗИИ

ДОБЫЧА

PA3PAEOTKA

ГЕОЛОГИЯ

ec.

and

ence

РАСПРЕДЕЛЕНИЕ И ИСПОЛЬЗОВАНИЕ

России Russian

подземное хранение

ДИАГНОСТИКА ГЕОФИЗИКА

УДК 622.691.24

Дорохина К.В., Евразийская патентная организация, Москва, Россия

Численное исследование ограничения прорыва диоксида углерода в зону эксплуатационного фонда скважин

Ключевые слова: диоксид углерода, модель, концентрация, пена, заводнение, подземное хранение газа

Одной из приоритетных задач является захоронение диоксида углерода в геологические структуры. Захоранивать CO_2 можно в существующие истощенные месторождения для повышения флюидоотдачи и подземные хранилища газа с целью частичного замещения буферного объема природного газа. Настоящая статья посвящена исследованию ограничения прорыва сверхкритического CO_2 в зону эксплуатационного фонда скважин за счет создания пенных барьеров и частичного заводнения пластаколлектора. Показано влиянии процесса адсорбции пены породой пласта, периода распада пены и процесса заводнения залежи на прорыв сверхкритического CO_2 в зону эксплуатационного фонда скважин. Даны рекомендации по выбору раствора ПАВ для длительного поддержания пены в пласте-коллекторе.

Сегодня в мире существует множество проектов по захоронению CO_2 в геологических структурах [1]. При размещении CO_2 в подземных хранилищах газа (ПХГ) возможно также частично заместить буферный объем природного газа [2–5]. При закачке CO_2 в метановый пласт будет происходить смешение двух компонентов газов, в случае наличия ярко выраженной неоднородности пласта возможны прорывы CO_2 по высокопроницаемым пропласткам в зону эксплуатационного фонда скважин. Таким образом, необходимо создать техническое решение для ограничения прорыва CO_2 в зону эксплуатационных скважин.

В работах [6, 7] показано, что при создании внутрипластовых экранов с помощью дисперсных систем можно контролировать перетоки газа из объекта ПХГ и приток пластовой жидкости к забоям эксплуатационных скважин. Внутрипластовые экраны имеют различную проницаемость для газа в зависимости от исходных параметров процесса создания экранов: концентрации синергетической композиции поверхностно-активного вещества (ПАВ), газонасыщенности пласта, его геологических особенностей и др. Поэтому для ограничения прорыва сверхкритического СО₂ в зону эксплуатационного фонда скважин возможно использование данной технологии с учетом ее совершенствования.

Постановка задачи

Критерием выбора объекта подземного хранения газа являются пластовое давление, температура пласта, при которых ${\rm CO}_2$ будет находиться в сверхкритическом состоянии. Объект представляет собой неоднородный пласт с ярко-выраженной слоистой неоднородностью со следующими основными параметрами: пластовая температура 33 °C, пластовое давление 10 МПа, средняя проницаемость пласта 350 мД, средняя пористость пласта 25%. Длинна оси X=200 м, Y=200 м, Z=20 м.

Расчеты проводились в программном комплексе ООО «РФД» tNavigator. В симуляторе на базе технологии моделирования трассеров реализована опция, позволяющая моделировать закачку в пласт пенообразующих веществ. Пена, заданная как трассер, может быть ассоциирована как с газовым, так и с водным компонентом. Поскольку закачиваемый раствор создается на основании пластовой воды с некой концентрацией ПАВ, примем инициатором распространения пены воду. Количество пены в блоке подчиняется следующему закону сохранения (в случае водного компонента):

$$\frac{\partial}{\partial t} \left(\frac{V N_w C_f}{\rho_{w(sc)}} \right) + \frac{\partial}{\partial t} \left(V \rho_r C_f^a \frac{1 - \phi}{\phi} \right) = \sum F_w \frac{C_f}{\rho_{w(sc)}} + \frac{Q_w C_f}{\rho_{w(sc)}} - \frac{\lambda (S_w, S_g) V N_w C_f}{\rho_{w(sc)}}$$
(1)

$$\frac{\partial}{\partial t} \left(rac{V N_w C_f}{
ho_{w(sc)}}
ight) -$$
 свободная пена;

$$rac{\partial}{\partial t}igg(V
ho_r C_f^a rac{1-\phi}{\phi} igg)$$
 – адсорбированная пена;

$$\Sigma F_{g} \frac{C_{f}}{\rho_{w(sc)}}$$
 – внос/вынос потоком;

$$\frac{Q_{\rm w}C_{\rm f}}{Q_{\rm w}}$$
 – закачка/отбор;

$$\rho_{w(sc)}$$

$$rac{\lambda(\mathsf{S}_w^{},\mathsf{S}_g^{})\mathit{VN}_g^{}C_f^{}}{
ho_{w(\mathsf{sc})}}$$
 — распад пены.

где C_f – концентрация пены;

 $ho_{w(sc)}$ – плотности воды в стандартных условиях;

 ρ_r – плотность породы;

V – поровый объём блока;

 N_w – молярная плотность воды;

 C_f^{a} – концентрация адсорбированной пены;

φ - пористость;

 F_{w} – массовый приток/отток воды из соседних блоков;

 $\widetilde{Q_w}$ – массовый приток/отток воды за счёт скважины;

 $\lambda(S_{w},S_{g})$ — коэффициент скорости распада, зависящий от водо- и газонасыщенности.

Таким образом, по вышеописанным законам будет проведено численное исследование влияния пенообразующих компонентов на прорыв сверхкритического CO_2 в зону эксплуатационного фонда скважин. При этом темп закачки $CO_2 - 100$ тыс. M^3 /сут. (скважина WU30_2), темп отбора природного газа – 150 тыс. M^3 /сут. (скважина WU30_1). Также подбирается пенообразующий ПАВ таким образом, чтобы предельная концентрация пены в каждом блоке сетки составляла 0,6 д.е. Объем полученного раствора закачивается с производительностью 200 M^3 /сут. (скважина WU1_1, расположенная вдоль фронта распространения CO_2) в течение трех суток. Далее вспенивание раствора осуществляется за счет прокачки природного газа в объеме 3600 M^3 [7] в течение следующих суток. Моделируемый период составил 30 суток.

Было рассмотрено несколько вариантов эксплуатации предполагаемого объекта размещения CO₂:

- закачка сверхкритического CO₂ с последующим отбором природного газа;
- оценка влияния пены на изменение относительных фазовых проницаемостей по газу на прорыв CO_2 ;
- оценка влияния процесса адсорбции пены породой и периода полураспада пены на прорыв CO₂;
- оценка влияния сплошного барьера пены и процесса заводнения участка пласта-коллектора на прорыв CO₂.

Результаты проведенных численных исследований по варианту 1

Результаты распределения концентрации сверхкритического ${\rm CO_2}$ по варианту 1 представлены на рис. 1.

Из рис. 1 видно, что прорыв ${\rm CO_2}$ к эксплуатационной скважине идет преимущественно по высокопроницаемым пропласткам, а поскольку ${\rm CO_2}$ тяжелее метана, его фильтрация идет активнее по подошве пласта. Пропластки, расположенные на глубине 1011 и 1017 метров, непроницаемы.

На рис. 2 представлено распределение концентрации добываемого пластового флюида.

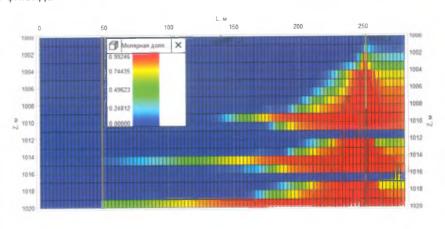


Рис. 1. Распределение концентрации сверхкритического ${\rm CO_2}$ в пласте-коллекторе

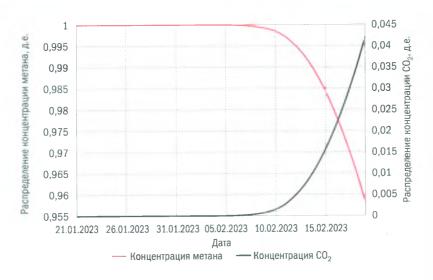


Рис. 2. Распределение концентрации сверхкритического CO₂ и метана в добываемой продукции

Из рис. 2 видно, что на конец моделируемого интервала концентрация ${\rm CO_2}$ в скважинной продукции равна 0,04184 д.е., метана – 0,95816 д.е. соответственно. В результате расчета данного варианта установлены основные параметры (концентрации компонентов в добываемой скважинной продукции, фронт распространения ${\rm CO_2}$), по которым будет оцениваться эффект снижения прорыва ${\rm CO_2}$ в зону эксплуатационного фонда скважин.

Результаты проведенных численных исследований по варианту 2

Во втором варианте на интервале прорыва ${\rm CO_2}$ бурится нагнетательная скважина для закачки раствора ПАВ по фронту распространения ${\rm CO_2}$. Результаты распределения пены и представлены на рис. 3.

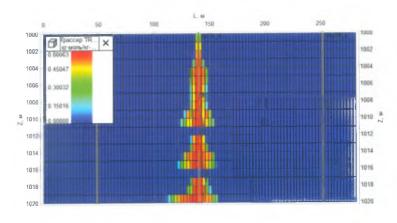


Рис. 3. Распределение концентрации пены в пласте-коллекторе

На рис. 4-6 представлены осредненные распределения концентрации сверх-критического ${\rm CO_2}$ с учетом закачки пены и без нее на плоскость по трем промежут-кам слоев: от 1 до 11 слоя (12 слой непроницаемый пропласток), от 13 до 16 слоя (17 слой непроницаемый пропласток) и от 18 до 20 слоя.

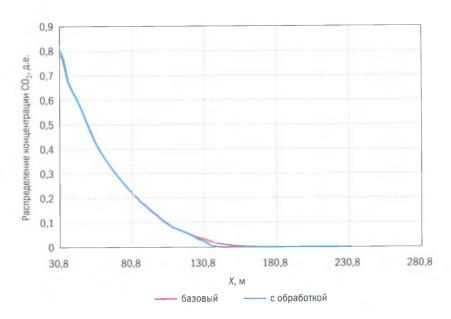


Рис. 4. Осредненное распределение концентрации сверхкритического ${\rm CO_2}$ от 1-го до 11-го слоя пласта-коллектора

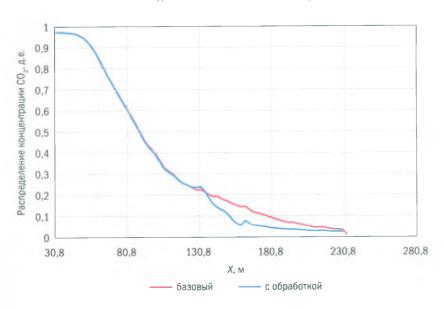


Рис. 5. Осредненное распределение концентрации сверхкритического ${\rm CO_2}$ от 13-го до 16-го слоя пласта-коллектора

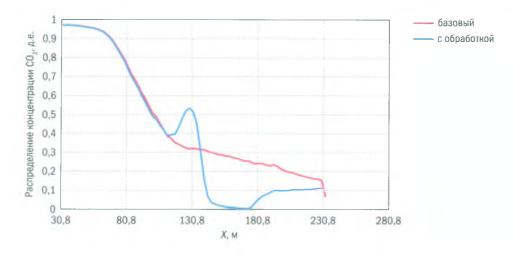


Рис. 6. Осредненное распределение концентрации сверхкритического CO₂ от 18-го до 20-го слоя пласта-коллектора

Из рис. 4 и 6 видно, что при X=130,8 метров (расположение нагнетательной скважины) начинается снижение концентрации CO_2 в результате закачки пены (снижение ОФП по газу). Скачок концентрации связан с аккумулированием CO_2 в окрестности нагнетательной скважины $\mathrm{WU1}_-1$ из-за перетока CO_2 из 20 в 19 и 18 слои по Z. В связи с этим на рис. 7 прослеживается разрыв насыщенности на интервале «нагнетательная скважина по CO_2 — раствор ПАВ». Из рис. 7 также видно, что CO_2 фильтруется, огибая скважину $\mathrm{WU1}_-1$ в районах отсутствия пены.

Из рис. 3-14 видно, что на конец моделируемого интервала концентрация ${\rm CO_2}$ в скважинной продукции равна 0,03421 д.е., метана – 0,9659 д.е. соответственно. Таким образом, из данного рисунка видно, что концентрация ${\rm CO_2}$ в скважинной продукции снизилась на 0,007626 д.е.

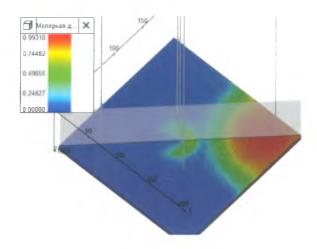


Рис. 7. Распределение концентрации сверхкритического ${\rm CO}_2$ по 19-му слою пласта-коллектора

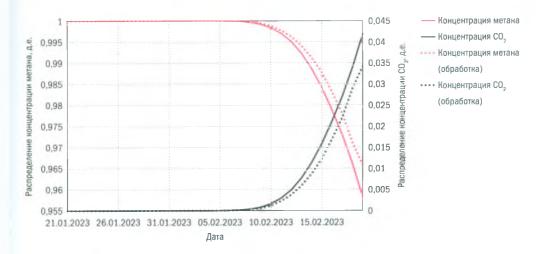


Рис. 8. Распределение концентрации сверхкритического CO₂ и метана в добываемой продукции

Из данных расчетов можно сделать вывод, что для предотвращения прорыва ${\rm CO}_2$ необходимо подбирать состав ПАВ таким образом, чтобы образованная пена максимально снижала ${\rm O}\Phi\Pi$ по газу.

Результаты проведенных численных исследований по варианту 3

В третьем варианте учитывается процесс адсорбции пены породой пласта-коллектора. Максимальное значение концентрации адсорбированной пены в 2-х вариантах расчета равно 0,1 и 0,00001 д.е. Таким образом, рассматривается пена с высоким и низким показателем адсорбции. Результаты распределения осредненной концентрации ${\rm CO_2}$ представлены на рисунках 9–11 при разных коэффициентах адсорбции.

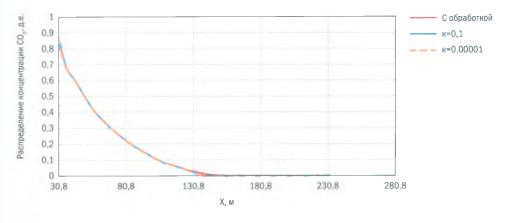


Рис. 9. Осредненное распределение концентрации сверхкритического ${\rm CO_2}$ от 1-го до 11-го слоя пласта-коллектора

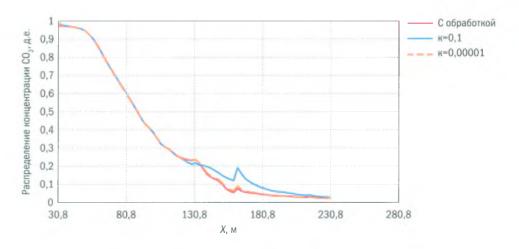


Рис. 10. Осредненное распределение концентрации сверхкритического CO₂ от 13-го до 16-го слоя пласта-коллектора

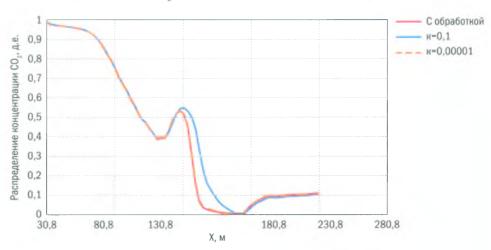


Рис. 11. Осредненное распределение концентрации сверхкритического CO₂ от 18-го до 20-го слоя пласта-коллектора

Из рис. 9-11 также видно, что в результате процесса адсорбции пены породой пласта-коллектора в интервале обработки ПАВ призабойной зоны скважины происходит рост концентрации CO_2 при высокой степени адсорбции пены породой. При снижении адсорбционной способности решение системы уравнений стремится к варианту «с обработкой». Таким образом, необходимо подбирать ПАВ с низкими адсорбционными свойствами, чтобы повысить стойкость пены.

При этом помимо процесса адсорбции пены породой пласта-коллектора при K=0,00001 д.е. необходимо учитывать период полураспада пены. В данном варианте он равен 30 суткам. Распад пены идет как в газовой среде в свободном виде, так и в адсорбированной части пены. Результаты распределения концентрации пены представлены на рис. 12.

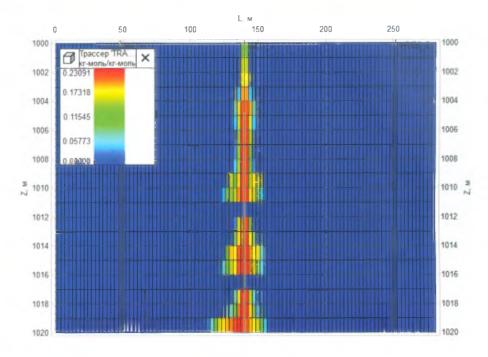


Рис. 12. Распределение концентрации пены в пласте-коллекторе

Из рис. 12 видно, что концентрация пены в пласте резко снижается, что влияет на фильтрацию ${\rm CO}_2$. Таким образом, чем больше период полураспада, тем дольше пена сохраняется в пласте.

Длительное существование пены в пласте обеспечивается низкой адсорбцией и высоким периодом полураспада, в следующем варианте будет исследована возможность создания сплошного барьера пены и воды.

Результаты проведенных численных исследований по варианту 4

В четвертом варианте рассматривается создание сплошного экрана пены и заводнения участка пласта тремя скважинами для предотвращения возможности прорыва CO_2 . Необходимо обеспечить максимальную непрерывность экрана по нижним пропласткам пласта-коллектора, поскольку под действием сегрегационного разделения активная фильтрация CO_2 идет по 15 и 20 слоям соответственно, но в том же моделируемом временном отрезке и идентичными параметрами работы скважин. Моделирование пены происходит с учетом абсорбции и периода полураспада. Результаты распределения осредненной концентрации CO_2 представлены на рис. 13–15.

Из рис. 13–15 видно, что в интервале закачки раствора ПАВ и воды сильнее снижает фильтрацию ${\rm CO_2}$ раствор ПАВ. Далее на отметке 180,8 м происходит слияние кривых, и процесс фильтрация ${\rm CO_2}$ становится идентичным по 2-м вариантам (вода, раствор ПАВ), поскольку ${\rm CO_2}$ мигрирует по участкам, где пена и вода отсутствуют.

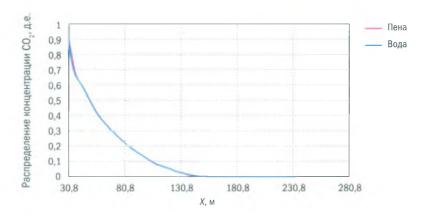


Рис. 13. Осредненное распределение концентрации сверхкритического CO₂ от 1-го до 11-го слоя пласта-коллектора

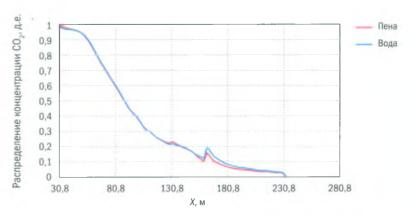


Рис. 14. Осредненное распределение концентрации сверхкритического ${\rm CO_2}$ от 13-го до 16-го слоя пласта-коллектора

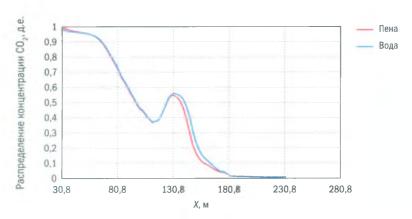


Рис. 15. Осредненное распределение концентрации сверхкритического ${\rm CO_2}$ от 18-го до 20-го слоя пласта-коллектора

Заключение

Таким образом, анализируя полученные решения, можно сделать следующие выводы:

- для предотвращения прорыва ${\rm CO}_2$ к зоне эксплуатационного фонда скважин необходимо подбирать раствор ПАВ так, чтобы образовавшаяся пена максимально снижала ОФП по ${\rm CO}_2$, исключала возможность процесса адсорбции пены породой и максимально долго не распадалась в пласте;
- для предотвращения прорыва CO_2 к зоне эксплуатационного фонда скважин также рекомендуется использовать частичное заводнение залежи, поскольку техническая реализация данного решения проще (пену необходимо восстанавливать) и экономически рентабельнее. При наличии водоносных горизонтов в объекте размещения CO_2 рекомендуется использовать пластовую воду данного горизонта;
- для увеличения эксплуатации объекта размещения диоксида углерода с термобарическими параметрами, соответствующими сверхкритическому агрегатному состоянию, без примеси CO_2 в скважинной продукции необходимо создавать непрерывные пенные (водные) экраны в нижней части пласта-коллектора, поскольку фильтрация сверхкритического CO_2 идет преимущественно по подошве пласта из-за процессов сегрегационного разделения;
- для увеличения эксплуатации объекта размещения диоксида углерода без примеси ${\rm CO_2}$ в скважинной продукции в случае его прорыва по подошве пласта необходимо изолировать приток из нижней части пласта, оставив перфорированным участок, расположенный ближе к кровле пласта-коллектора;
- расчеты подтвердили необходимые требования, предъявляемые к водному раствору ПАВ, для длительного поддержания пены в пласте. Результаты данных вычислений будут являться базовыми для разработки режима эксплуатации объекта размещения ${\rm CO}_2$ в случае создания пенных или водяных барьеров по фронту распространения ${\rm CO}_2$.

Библиография

- 1. Хан С.А. Анализ мировых проектов по захоронению углекислого газа // Георесурсы. 2010. № 4 (36). С. 55-62.
- Хан С.А., Дорохин В.Г., Бутов К.А., Оводов С.О., Гусаков А.В. Экспериментальная оценка воздействия диоксида углерода и смесей неуглеводородных газов, входящих в состав дымовых газов, на изменение химического состава и скорость разрушения цементного камня эксплуатационных скважин ПХГ // Научный журнал Российского газового общества. 2022. № 3(35). С. 86-95.
- 3. Дмитриевский А.Н., Хан С.А., Мойжиш Я., Семенов О.Г., Хвостова В.Ю. Сокращение объемов буферного газа при создании газохранилищ в месторождениях углекислого газа // Газовая промышленность. 2009. №9. С. 37-40.
- 4. Хан С.А., Дорохин В.Г., Бондаренко Н.П. Использование особенностей агрегатных состояний двуокиси углерода для замещения части буферного объема подземных хранилищ газа // Газовая промышленность. 2016. №4. С. 30-35.
- 5. Каримов М.Ф. Эксплуатация подземных хранилищ газа. М., Недра, 1981. 248 с.

- 6. Хан С. А., Каримов М.Ф., Муллагалиева Л.М., Дудникова Ю.К. и др. Опыт создания протяженного пластового экрана из дисперсных систем при подземном хранении газа в водоносных пластах // Газовая промышленность. 2015. № 8. С. 70-74.
- 7. Хан С. А., Дудникова Ю.К., Каримов М.Ф., Муллагалиева Л.М. Оценка влияния внутрипластового экрана из дисперсных систем на снижение перетоков газа // Газовая промышленность. 2015. № 10. С. 8-12.